
The Stress of Improvisation: Instructors’ Perspectives on Live
Coding in Programming Classes

Xiaotian Su
Computer Science

ETH Zurich
Zurich, Switzerland

xiaotian.su@inf.ethz.ch

April Yi Wang
Computer Science

ETH Zurich
Zurich, Switzerland

april.wang@inf.ethz.ch

Abstract
Live coding is a pedagogical technique in which an instructor

writes and executes code in front of students to impart skills like
incremental development and debugging. Although live coding
offers many benefits, instructors face many challenges in the class-
room, like cognitive challenges and psychological stress, most of
which have yet to be formally studied. To understand the obstacles
faced by instructors in CS classes, we conducted (1) a formative
interview with five teaching assistants in exercise sessions and (2) a
contextual inquiry study with four lecturers for large-scale classes.
We found that the improvisational and unpredictable nature of live
coding makes it difficult for instructors to manage their time and
keep students engaged, resulting in more mental stress than pre-
senting static slides. We discussed opportunities for augmenting
existing IDEs and presentation setups to help enhance live coding
experience.

CCS Concepts
• Human-centered computing→ Empirical Studies in HCI .

Keywords
live coding, programming education at scale

ACM Reference Format:
Xiaotian Su and April Yi Wang. 2025. The Stress of Improvisation: Instruc-
tors’ Perspectives on Live Coding in Programming Classes. In Extended
Abstracts of the CHI Conference on Human Factors in Computing Systems
(CHI EA ’25), April 26–May 01, 2025, Yokohama, Japan. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3706599.3719993

1 Introduction
Live coding is a teaching method where instructors write code

in real time in front of students while verbalizing their thoughts
[18, 19]. This approach allows instructors to demonstrate debugging
and problem-solving strategies as they occur [20, 21]. Unlike static
code examples, live coding presents code in a step-by-step manner
so students know which line of code to focus on thus reducing their
extraneous cognitive load [19]. It also creates a more engaging,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1395-8/25/04
https://doi.org/10.1145/3706599.3719993

hands-on learning experience [21] and improves testing skills [3],
as reported by both students and instructors.

While live coding offers numerous benefits to students, our un-
derstanding of instructors’ experiences with this technique remains
limited [23]. For example, studies have suggested that instructors
may experience “stage fright” – anxiety about both the content and
the style of their delivery [22]. By typing, debugging, and thinking
aloud, instructors may experience more mental workload than in
normal lectures [23]. However, to our knowledge, no study has
explored the actual experiences and perceptions of instructors per-
forming live coding. Specifically, there is little concrete evidence
for how instructors perceive the benefits of live coding and the
cognitive load it imposes on them, a gap that is highlighted by
Selvaraj et al. [23]. Addressing these questions is not only crucial
for the overall impact of live coding in educational contexts but
also for informing the design and development of innovative tools
that can support instructors by reducing cognitive load, enhancing
real-time interactions, and improving the overall efficacy of live
coding sessions.

To explore the challenges associated with live coding, we propose
the following research questions: (1) What motivates instructors to
use live coding in their teaching? (2) How do instructors approach
and execute live coding in the classroom? (3) What obstacles or bar-
riers do instructors encounter when teaching programming through
live coding? Through two complementary studies–formative inter-
views with five teaching assistants (TAs) and contextual inquiries
with four lecturers—-we aim to provide a holistic understanding
of live coding by exploring both reflective and contextual perspec-
tives, thereby deepening insights into instructors’ perceptions of
this teaching practice. We found that although instructors agree
that live coding can provide adaptive content to engage students, it
is a time consuming activity in terms of both preparation and pre-
sentation. The improv nature further adds burden to the instructors’
mental load. Based on these insights, we present design implica-
tions on the development of tools that provide real-time scaffolding
to improve the effectiveness of live coding in educational settings.

2 Related Work
2.1 Live Coding for Students in CS Classrooms

Although live coding has not been conclusively shown to signif-
icantly improve measurable student learning outcomes [19, 21, 24],
this format offers many benefits to the teaching and learning experi-
ence compared to teaching programming with static code examples.
Firstly, live coding can reduce the extraneous cognitive load on
students’ working memory by presenting code in a step-by-step

https://orcid.org/0009-0004-0548-1576
https://orcid.org/0000-0001-8724-4662
https://doi.org/10.1145/3706599.3719993
https://doi.org/10.1145/3706599.3719993


CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Su et al., Xiaotian Su, and April Yi Wang

manner to guide students’ focus [19]. Secondly, live coding allows
students to be actively engaged during the presentation, students
appreciate they can be more involved in writing code along with the
instructor in live coding sessions [11] Thirdly, watching instructors
make mistakes shows learners that it is alright to make mistakes [6]
Finally, when instructors think aloud during live coding, they reveal
their thought processes and the reasoning behind their decisions.
This approach not only makes abstract concepts more accessible but
also provides students with insight into problem-solving strategies
[3, 8, 11]. Discussing code line by line further helps clarify com-
plex programming concepts, which students often find challenging
[3, 8, 11].

Despite the benefits, live coding presents several challenges that
can hinder students’ learning experiences and engagement. While it
is preferred for explaining complex concepts, students perceive it as
inefficient for simpler topics, where static code examples are more
effective and time-saving [11]. Additionally, the dynamic nature of
live coding complicates note-taking, as the program evolves contin-
uously during the session [19, 24].Students have expressed difficulty
in mirroring the instructor’s edits in their notes, as it is easier for
the instructor to modify code in real time. Furthermore, instructors
typically share only the final solutions, omitting the intermediate
steps and thought processes that led to the result. This lack of cap-
tured progression reduces the value of the demonstration, making
it harder for students to recall the solution’s development after class
[25]. Moreover, students who miss a session cannot benefit from
the live coding experience, as it is a one-time performance.

2.2 Challenges for Performing Live Coding
While the benefits of live coding for students have been increas-

ingly recognized, our understanding of instructors’ experiences
with this technique remains limited. Existing research predomi-
nantly focuses on student learning outcomes, leaving a significant
gap in our knowledge about how instructors perceive and manage
the challenges of live coding in practice [23]. This section explores
the potential obstacles faced by instructors, drawing upon literature
from related fields to hypothesize about the difficulties encountered
during live coding sessions.

One major challenge likely faced by instructors is the high men-
tal workload. Mental workload, defined as the cognitive resources a
task demands from an individual [14], can be significantly elevated
during live coding for two main reasons. First, the cognitive burden
is increased due to the think-aloud component. The think-aloud
method is commonly employed by usability research to capture
participants’ thought processes [10], it was demonstrated that this
verbalization increases cognitive load compared to silent task perfor-
mance [16]. Instructors verbalize their reasoning and actions during
live coding, this kind of verbalization corresponds to the most com-
plex level (level three) of verbalization according to Ericsson and
Simon [10]. This cognitive load is further exacerbated when instruc-
tors simultaneously address student questions [16]. Secondly, the
inherent multitasking nature of live coding—simultaneously writ-
ing code, verbalizing thoughts, and interacting with students—can
dramatically increase mental strain. Multitasking has been shown
to reduce efficiency significantly due to task-switching costs [15],
and high mental workloads during multitasking can lead to task

management errors [27]. For example, [17] found that instructors
reported greater workloads and lower communication quality when
managing multiple student interactions compared to one-on-one
settings.

In addition to cognitive challenges, instructors in classrooms
may experience psychological stress. Stage fright, a form of social
anxiety, stems from fears of makingmistakes, forgettingmaterial, or
losing focus, leading to physical and emotional symptoms [12, 22].
This anxiety is heightened by the pressure to convey complex mate-
rial in real time [13], making live coding especially stressful. Despite
these challenges derived from literature, the actual experiences and
perceptions of instructors regarding live coding remain largely un-
explored. This paper addresses this gap by examining instructors’
motivations to use live coding, strategies they employ to engage
students, and obstacles they encounter, aiming to inform the devel-
opment of tools to support effective live coding.

3 Methodology
We initially simulated live coding in a lab where participants

solved a coding problem while explaining to the researchers. How-
ever, this setup failed to replicate key classroom aspects. Partici-
pants missed the stress of a real audience, lacked time constraints,
and did not face the pressure of managing multiple concepts. The
task’s low cognitive load, such as copy-pasting code from prepared
notes, did not reflect the complexity of real live coding. The environ-
ment also lacked interactivity, with no student input or unexpected
challenges to address, resulting in minimal debugging.

To overcome these limitations and ensure a realistic understand-
ing of live coding practices, we conducted two complementary
studies. First, we conducted formative interviews with TAs (N=5),
focusing on their experiences and perceptions of live coding in
small exercise sessions. Second, we carried out contextual inquiries
with lecturers (N=4) by observing their live coding practices in
large-scale lectures. Table 1 reported the demographics data of par-
ticipants from the two studies. We captured a holistic view of live
coding by combining both reflective and contextual perspectives,
enabling us to identify common themes, challenges, and unique
insights across different instructional roles and settings.

3.1 Formative Study
Five TAs (4M, 1F) with computer science backgrounds and teach-

ing experience were recruited through campus posters. They had
experience teaching programming exercise sessions in high school
or university settings, with class sizes ranging from 15 to 30 stu-
dents. Programming languages taught included XLogo, Python,
Java, and C++. The interview sessions were audio-recorded, each
lasted 30-40 minutes. All transcripts were read and analyzed, and
relevant passages were highlighted. We applied an inductive ap-
proach to coding [5], whereby themes are drawn from the raw
data. Inductive coding was chosen to account for the breadth of
experiences presented by our participants.

3.2 Contextual Inquiry
We conducted classroom observations with four male lecturers

experienced in live coding from our university’s computer science
department, each covering two 45-minute lectures. The lectures we



The Stress of Improvisation: Instructors’ Perspectives on Live Coding in Programming Classes CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

PID Age Range Gender Profession Teaching
(# years)

Class size
(# students) Students

H U C
P1 20-25 F BSc Student One 20-30 ✓ ✓
P2 20-25 M MSc Student, part-time lecturer Three 20-30 ✓ ✓
P3 26-30 M PhD Student Five 20-30 ✓
P4 20-25 M PhD Student Five 30-50 ✓ ✓
P5 26-30 M PhD Student Six 20-30 ✓ ✓
P6 30-35 M Full-time lecturer Five 300-400 ✓
P7 40-45 M Full-time lecturer Five 50-150 ✓ ✓
P8 45-50 M Full-time lecturer Eight 100-150 ✓ ✓

Table 1: Demographics data of participants. H: High school students, U: University students, C: Continuing education.

observed covered topics introduction to programming in Python
and C++, Data Science & Machine Learning. The study involved
classroom observation and a semi-structured interview to under-
stand their experience and mental workload during live coding
sessions. Teaching materials were collected beforehand, and in-
structors’ behaviors and student interactions were noted. Data
collection included field notes from two observers, audio/video
recordings (when permitted), teaching materials (slides, code), and
classroom artifacts (whiteboard snapshots). These were analyzed to
identify recurring patterns and themes. Follow-up interviews were
analyzed using the same coding method as the formative study.

4 Findings
4.1 Motivations (RQ1)
4.1.1 Improve Comprehension and Pacing. Live coding helps in-
structors slow down the lecture speed, enabling students to follow
the steps and understand the code, as explained by P1, “There is a
danger of when I show them a picture or slide, and I just continue,
then I go too fast. If I do live coding, I cannot speed up it more than just
writing the code ”. This deliberate pace, combined with the ability
to effectively clarify concepts through visual output, foster better
comprehension.

4.1.2 Adaptivity. Live coding allows instructors to address student
queries and adapt teaching to student needs in real-time. P5 empha-
sized the importance of being “flexible enough to go into new paths”
is the key to a good live coding session. Others highlighted similar
benefits, like the ability to adjust solutions to address errors (P4)
and the flexibility to modify the program directly to demonstrate
concepts in response to student questions, unlike static slides (P8).

4.1.3 Engagement. Participants reported higher levels of student
engagement and interaction during live coding sessions compared
to traditional lectures, P4 noted, “I found out that if I type in front of
them, it makes them feel less pressure to raise their hands and interrupt
my typing and ask the questions at that specific point”. Instructors
also mentioned that they got more specific and eager questions from
students. These observations align with prior research showing
increased student interaction and engagement during live coding
sessions [26].

4.1.4 Instilling Good Programming Practices. Live coding was also
seen as an opportunity to model and instill good programming
habits. P2 remarked, “When I show students that I transform very
unreadable code into readable code, I notice that in the next submis-
sions, they follow these practices.” Similarly, P4 observed that live
coding improved students’ adherence to coding conventions and
best practices, such as proper formatting and spacing.

4.2 Implementations (RQ2)
4.2.1 Preparation. Contrary to what [11] reported that instructors
often incrementally develop their program in a step by step manner,
participants teaching advanced programming topics (e.g. recursion)
consistently prepared full code solutions for live coding sessions
prior to class to help reduce in-class stress (P1, P2 for university
students, P3, P4, P6-P8), which can lead to preparation overhead (P2).
P7 and P8 mentioned strategies like leaving part of the important
code cells in notebooks for live coding. In contrast, instructors
teaching simpler topics (e.g. turtle programming) often adopted
a spontaneous approach. P2 and P5 avoided preparing complete
code in advance, as the simplicity of the tasks allowed them to code
from scratch, better present their original thought processes. P5
described starting with only a skeletal framework “I wouldn’t have a
fixed set of commands ready, I would put myself in the situation of the
students that they would be starting from a blank slate”. Instructors
described additional preparation tips, including using bullet points
or printed solutions as references (P1), outlining key exercises or
concepts to introduce (P5), and using ChatGPT to help generate
exercises (P1).

4.2.2 Procedure. Our finding aligns with prior work Hwang et al.
[11] that documented the detailed live coding process in classrooms.
In short, in lectures (P6-P8), live coding typically lasts 5–10 minutes,
either to demonstrate a concept or to motivate students, as instruc-
tors need to allocate time for additional topics. In contrast, live
coding during exercise sessions tends to be more flexible, allowing
for extended demonstrations and hands-on practice. These sessions
often follow a structure where TAs first recap key concepts using
slides, then allow students to work on problems independently
before demonstrating solutions.

4.2.3 Students’ Activities. Although none of the instructors re-
quired students to type code during exercises, many (P2 and P4)



CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Su et al., Xiaotian Su, and April Yi Wang

observed students actively coding alongside live demonstrations. In
P6-P8’s lectures, students were noticeably more engaged during live
coding compared to slide-based presentations. They collaborated
by pointing at each other’s screens to explain code or programming
concepts. Students also asked more questions during live coding
sessions than slide presentations, which aligns with previous find-
ings [26]. The heightened interactivity motivated presenters to
conduct additional testing in response to student queries. How-
ever, we observed a challenge in large classrooms: students found
it difficult to call out the next line of code when instructors sought
input. This highlights a limitation of verbal interaction in large
classrooms, where the physical layout and class size can hinder
effective communication.

4.3 Obstacles (RQ3)
4.3.1 Decline of Engagement. Live coding, while effective in demon-
strating programming concepts, often struggles to maintain stu-
dents’ attention due to two common challenges. First, the time-
intensive nature of the activity can cause students to lose interest if
the session becomes overly lengthy. Second, instructors frequently
become overly absorbed in coding tasks, such as debugging, which
disrupts their connection with the audience. As P2 noted, “When
the code get complex, I tend to focus too much on the debugging and I
lose the audience”. These challenges echo findings from previous
studies on live-streamed programming sessions [1]. To counteract
these challenges, participants have shared techniques to engage stu-
dents during live coding: asking for input and intentionally making
mistakes. P6 noted that they only make deliberate mistakes when
the code is simple, as more complex errors can confuse students
and hard for themselves to manage. Additionally, P2 and P4 men-
tioned inviting students to the front of the class to present their
code, which further fosters engagement by actively involving them
in the process.

4.3.2 Unpredictability. Live coding is an improvisatory practice [4]
that often lacks a predefined structure [19]. This flexibility allows
instructors to go off-road, follow students’ interests, and explore
additional concepts beyond a pre-prepared presentation [26]. How-
ever, such improvisation also introduces unpredictability, as live
demonstrations may deviate from the plan, occasionally resulting
in errors or unexpected outcomes.

Although most instructors prepare precise scripts (P1-P4, P6-P8)
or code skeletons (P5) beforehand, deviations from these plans are
common, often leading to unintentional mistakes. For example, P8
shared, “I have the tendency to stray away from what I have pre-
pared”. These deviations are often a result of dual task of managing
the class simultaneously while coding, and constantly referring to
notes can slow down the flow. This reflects the tension between
maintaining a smooth flow and referencing notes [6]. Unpredictabil-
ity is further amplified by student engagement, which introduces
variations and disrupts time management. Instructors can adapt
on the fly to accommodate student mistakes, which requires im-
provisation. Such adjustments can deviate significantly from the
original plan, and can further increase the likelihood of errors. As
P3 explained, differences in variable names and code structure can
lead to unexpected deviations. Debugging adds another layer of

uncertainty, as instructors must first understand students’ reason-
ing before guiding them toward the correct solution, which often
extends beyond the initial plan. P1 reflected on this challenge, shar-
ing that they rarely keep track of time during these interactions, “I
end up doing something, them asking questions, and it goes on, and I
kept going until they understood everything”.

These factors–deviations from prepared plans, on-the-fly adapta-
tions, reliance on memory, and student interactions–all contribute
to the inherent unpredictability of live coding sessions. While this
flexibility can enhance engagement and learning, it also demands
considerable adaptability and real-time decision-making from in-
structors.

4.3.3 Mental Stress. Instructors reported high levels of stress caused
by various reasons, including experience level, cognitive constrains
of thinking aloud, multitasking process, and psychological stress
when presenting publicly.

Experience Level: When instructors first began using live cod-
ing, they may have high stress levels. But over time, it decreased
as they gained experience. P1, the least experienced instructor, de-
scribed their initial anxiety: “So when I did at the first time, I was
very nervous that I couldn’t do it, and I would make mistakes, and I
wouldn’t be able to find the mistakes.” This nervousness sometimes
manifested physically, “if I’m sometimes very nervous, I might like
start shaking a little bit with my voice, and be blocked for a few
seconds. Just don’t see how to continue.” (P1) More experienced in-
structors echoed similar sentiments but emphasized that familiarity
with the format reduced the mental load over time. “In the begin-
ning, it was quite a lot of mental load to do live coding, I needed to
think how to get it to work, what if I got it wrong and I don’t make
typos. With more live coding sessions, the mental load is decreas-
ing, but it’s still above the mental load of the normal lecture style.”
(P7) All lecturers in contextual inquiry rated live coding classes as
more mentally demanding than normal classes except P8, the most
experienced participant. P8 shared approaches such as frequently
executing and verifying the result, or having a printed solution to
help with unexpected mistakes.

Think Aloud: Thinking aloud while typing is a significant
source of mental stress, as previously observed in technical cod-
ing interviews. Behroozi et al. [2] reported that being watched
while thinking aloud lowers technical interview performance. P4
mentioned that this is manageable in simpler contexts, such as
high school lessons. In university level, this is unfeasible due to
the increased complexity and length of the code. “It was kind of
possible to code and talk at the same time. It’s not very challenging
(in high school), but in university level, there’s no chance of me doing
that.” (P4) To manage this, P4 preferred to separate explanation
and coding: “I first explain to them and then I showed it to them.”
Another challenge is the mismatch between spoken explanations
and written code. P2 highlighted this difficulty: “When I use the
blackboard or slides, I write the same words as I say or the same words
appear similarly on the slides. But when I say we now make a loop, I
have to write something completely different than what I’m saying.”

Multitasking: The multitasking nature could be another source
of mental stress [2]. Novice instructors often feel overwhelmed by
the amount of simultaneous activity in a classroom [9]. All of the
TAs emphasized that live coding is more mentally demanding than



The Stress of Improvisation: Instructors’ Perspectives on Live Coding in Programming Classes CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

conventional lectures, irrespective of the amount of code involved.
The challenges include slow typing speed, managing multiple de-
vices, and maintaining awareness of students’ engagement.

Fear of Making Mistakes: Spontaneous lectures are invigorat-
ing but carry the risk of mistakes that could confuse students and
harm the instructor’s confidence [18]. Instructors often experience
heightened anxiety during live coding sessions due to this fear,
which adds significant pressure even for experienced teachers. P4
highlighted the importance of avoiding errors to prevent misguid-
ing students. Similarly, P1 mentioned the challenges of explaining
concepts under pressure, “When you do live coding, you do it on
the go. Mistakes can happen. You might forget something. You might
explain something, not as you wanted it to, because you’re nervous.”
while P2 reflected on the stress of making mistakes, particularly as
a new teacher. P3 noted the mental demands of live coding com-
pared to regular lectures, and P6 emphasized the need for clarity
when solving student problems, as hesitation or errors can confuse
learners.

Stage Fright: The public nature of live coding creates additional
psychological pressure. P6 described the impact of being observed
by a large audience: “The feeling of being observed by hundreds of
students creates a psychological pressure. There was laughter and
students whispering, those things psychologically affected me.” This
pressure also manifests as self-doubt, with P6 noting: “There’s a
little voice in my head that says, ‘Did I make a mistake, am I missing
something, did they find a solution that I did not see’, and that clatter
in the head makes it hard to teach.”

4.3.4 Time Pressure. Live coding demands more time from instruc-
tors, both in preparation (as discussed in Section 4.2) and in presen-
tation. Compared to static code presentations, live coding sessions
can take up to twice as long, as instructors must write and test code,
explain their thought processes, and interact with students [19, 26].
This sentiment was echoed by participants (P2-4, P7).

The improvisational and unpredictable nature of live coding
further complicates time management. Instructors often struggle
to accurately estimate durations. P2 reflected: “I used to do a lot
of time management, say I use 15 minutes for this, 20 minutes for
this but I just saw that these estimates are so unrealistic because
it depends on how many questions people ask.” Furthermore, bugs
introduces additional delays, disrupting the flow of the lecture. P2
elaborated: “I think the live coding always takes a lot more time
than anything else because I have to write the code and students ask,
then I make a mistake, something doesn’t execute, then I have to
check what it was.” P4 highlighted how spending too much time on
debugging could reduce student engagement: “This makes you feel
you’re wasting the time of your students and the students are getting
bored in some way I feel that stresses me and that does make me not
as likely to do live coding in university students because I know that it
can easily be boring because it takes too long.” This worry aligns with
previous research [11], which noted that live coding’s slower pace
and frequent interruptions can make it less time-efficient compared
to static code examples.

5 Discussion
5.1 Design Implications
5.1.1 Tailoring IDEs for Educational Live Coding. Tailored IDEs
and real-time code sharing tools can significantly improve the ef-
fectiveness of live coding in educational settings. Participants high-
lighted the challenges with current code editors such as PyCharm,
IntelliJ, and Visual Studio Code. These tools, while powerful, of-
ten have overly complex interfaces that demand significant effort
from students to navigate. Simplified IDEs with minimalist inter-
faces can reduce distractions and cognitive load while retaining
essential functionality. Features like automatic syntax correction,
guided code templates, and streamlined debugging workflows can
further support instructors. In addition, incorporating real-time
code sharing features can improve engagement and interactivity in
live coding sessions. Existing tools such as Live Share1, Code With
Me2, and Replit3, allow multiple developers to browse and edit
code simultaneously. However, they were not specifically designed
for classroom use and often lack features like access control for
student edits, which is critical in large classrooms with hundreds
of students, or mechanisms for better code communication, such as
allowing students to highlight code, suggest edits, or ask questions
directly within the IDE.

5.1.2 Adaptive Content Presentation. The Improv IDE extension,
which synchronizes code blocks and outputs with presentation
slides, is one of the few efforts to help instructors manage their
cognitive load during live coding presentation [7]. They lowered
cognitive load by minimizing context switching and made it easier
to fix errors on-the-fly. However, Improv is limited in its ability
to adapt dynamically to the live classroom environment. It lacks
features that allow instructors to respond to unanticipated student
questions or adjust content based on real-time feedback. Future
systems could incorporate AI-driven recommendations to help in-
structors manage unexpected scenarios during live coding. For
instance, language models could suggest relevant code snippets or
alternate examples based on student queries, helping instructors
adapt their teaching on-the-fly. AI could also assist in debugging by
identifying potential errors and offering step-by-step solutions in
real time, reducing the cognitive burden on instructors. Moreover,
integrating models’ generative abilities into these tools could en-
able automatic transcription of verbal explanations into structured
notes, allowing students to follow along more effectively.

5.2 Limitations
This study has several limitations to consider. The small sample

size, particularly in the contextual inquiry phase, may limit the gen-
eralizability of our findings. Future research should involve a larger
and more diverse group of instructors across different institution.
Additionally, our reliance on self-reported data from instructors
may introduce biases. Future studies could incorporate more objec-
tive measures of cognitive load and stress, such as physiological
data or performance metrics. Also, further research is needed to
investigate the long-term effects of live coding on student learning

1https://visualstudio.microsoft.com/services/live-share/
2https://www.jetbrains.com/code-with-me/
3https://replit.com/



CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan Su et al., Xiaotian Su, and April Yi Wang

outcomes and to develop strategies for mitigating the challenges
identified in this study.

6 Conclusion
Live coding is a powerful pedagogical technique that offers nu-

merous benefits for programming education, including increased
student engagement, deeper understanding of concepts, and the
development of good programming practices. However, instruc-
tors face significant challenges when implementing live coding in
the classroom, particularly related to its unpredictable nature, the
mental stress it induces, and the limitations imposed by time con-
straints and available tools. Addressing these issues could improve
its effectiveness by developing simpler, more intuitive IDEs tailored
to the live coding context, creating real-time collaboration tools
dedicated to live coding classrooms and incorporating language
models to help with adaptive content presentation. Future research
should explore the development of dedicated tools for live coding
and examine their impact on teaching and learning experiences.

Acknowledgments
We would like to express our gratitude to Dieter Schwarz Foun-

dation for funding this research. We also sincerely thank Carlos
Cotrini Jimenez, Aaron Zeller, and Lukas Mast for their valuable
contributions to the study, including data collection and insight-
ful discussions. Finally, we appreciate the time and effort of all
participants who took part in our study. Their insights have been
invaluable in shaping our findings.

References
[1] Abdulaziz Alaboudi and Thomas D. LaToza. 2019. An Exploratory Study of Live-

Streamed Programming. In 2019 IEEE Symposium on Visual Languages andHuman-
Centric Computing (VL/HCC). 5–13. https://doi.org/10.1109/VLHCC.2019.8818832

[2] Mahnaz Behroozi, Shivani Shirolkar, Titus Barik, and Chris Parnin. 2020. Does
stress impact technical interview performance?. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 481–492. https:
//doi.org/10.1145/3368089.3409712

[3] Jens Bennedsen and Michael E Caspersen. 2005. Revealing the programming
process. In Proceedings of the 36th SIGCSE technical symposium on Computer
science education. 186–190.

[4] Alan F Blackwell, Emma Cocker, Geoff Cox, Alex McLean, and Thor Magnusson.
2022. Live coding: a user’s manual. MIT Press.

[5] R Boyatzis. 1998. Transforming qualitative information: Thematic analysis and
code development. Sage.

[6] Neil CC Brown and Greg Wilson. 2018. Ten quick tips for teaching programming.
PLoS computational biology 14, 4 (2018), e1006023.

[7] Charles H. Chen and Philip J. Guo. 2019. Improv: Teaching Programming at Scale
via Live Coding. In Proceedings of the Sixth (2019) ACM Conference on Learning @
Scale (Chicago, IL, USA) (L@S ’19). Association for Computing Machinery, New
York, NY, USA, Article 9, 10 pages. https://doi.org/10.1145/3330430.3333627

[8] Yan Chen, Walter S. Lasecki, and Tao Dong. 2021. Towards Supporting Program-
ming Education at Scale via Live Streaming. Proc. ACM Hum.-Comput. Interact. 4,
CSCW3, Article 259 (Jan. 2021), 19 pages. https://doi.org/10.1145/3434168

[9] Ellen Corcoran. 1981. Transition Shock: The Beginning Teacher’s Paradox Ellen
Corcoran. Journal of teacher education 32, 3 (1981), 19–23.

[10] K Anders Ericsson and Herbert A Simon. 1980. Verbal reports as data. Psycholog-
ical review 87, 3 (1980), 215.

[11] Derek Hwang, Vardhan Agarwal, Yuzi Lyu, Divyam Rana, Satya Ganesh Susarla,
and Adalbert Gerald Soosai Raj. 2021. A Qualitative Analysis of Lecture Videos
and Student Feedback on Static Code Examples and Live Coding: A Case Study.
In Proceedings of the 23rd Australasian Computing Education Conference (Virtual,
SA, Australia) (ACE ’21). Association for Computing Machinery, New York, NY,
USA, 147–157. https://doi.org/10.1145/3441636.3442317

[12] John R Marshall and Suzanne Lipsett. 1994. Social phobia: From shyness to stage
fright. Basic Books/Hachette Book Group.

[13] George Herbert Mead. 1934. Mind, self, and society from the standpoint of a
social behaviorist. (1934).

[14] Shinji Miyake. 2001. Multivariate workload evaluation combining physiological
and subjective measures. International Journal of Psychophysiology 40, 3 (2001),
233–238. https://doi.org/10.1016/S0167-8760(00)00191-4 Psychophysiology in.

[15] Stephen Monsell. 2003. Task switching. Trends in cognitive sciences 7, 3 (2003),
134–140.

[16] Kristin D. Hansen Morten Hertzum and Hans H.K. Andersen. 2009. Scrutinising
usability evaluation: does thinking aloud affect behaviour and mental workload?
Behaviour & Information Technology 28, 2 (2009), 165–181. https://doi.org/10.
1080/01449290701773842 arXiv:https://doi.org/10.1080/01449290701773842

[17] Mai Otsuki, Tzu-Yang Wang, and Hideaki Kuzuoka. 2022. Assessment of Instruc-
tor’s Capacity in One-to-Many AR Remote Instruction Giving. In Proceedings of
the 28th ACM Symposium on Virtual Reality Software and Technology (Tsukuba,
Japan) (VRST ’22). Association for Computing Machinery, New York, NY, USA,
Article 8, 5 pages. https://doi.org/10.1145/3562939.3565631

[18] John Paxton. 2002. Live programming as a lecture technique. 18, 2 (dec 2002),
51–56.

[19] Adalbert Gerald Soosai Raj, Pan Gu, Eda Zhang, Arokia Xavier Annie R, Jim
Williams, Richard Halverson, and Jignesh M. Patel. 2020. Live-coding vs Static
Code Examples: Which is better with respect to Student Learning and Cognitive
Load?. In Proceedings of the Twenty-Second Australasian Computing Education
Conference (Melbourne, VIC, Australia) (ACE’20). Association for Computing Ma-
chinery, New York, NY, USA, 152–159. https://doi.org/10.1145/3373165.3373182

[20] Adalbert Gerald Soosai Raj, Jignesh M. Patel, Richard Halverson, and Erica Rosen-
feld Halverson. 2018. Role of Live-coding in Learning Introductory Programming.
In Proceedings of the 18th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’18). Association for Computing
Machinery, New York, NY, USA, Article 13, 8 pages. https://doi.org/10.1145/
3279720.3279725

[21] Marc J. Rubin. 2013. The effectiveness of live-coding to teach introductory pro-
gramming. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for Comput-
ing Machinery, New York, NY, USA, 651–656. https://doi.org/10.1145/2445196.
2445388

[22] Susie Scott. 2007. College hats or lecture trousers? Stage fright and
performance anxiety in university teachers. Ethnography and Educa-
tion 2, 2 (2007), 191–207. https://doi.org/10.1080/17457820701350582
arXiv:https://doi.org/10.1080/17457820701350582

[23] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). Association for Computing Machinery, New York, NY,
USA, 164–170. https://doi.org/10.1145/3430665.3456382

[24] Anshul Shah, Emma Hogan, Vardhan Agarwal, John Driscoll, Leo Porter,
William G. Griswold, and Adalbert Gerald Soosai Raj. 2023. An Empirical
Evaluation of Live Coding in CS1. In Proceedings of the 2023 ACM Conference
on International Computing Education Research - Volume 1 (Chicago, IL, USA)
(ICER ’23). Association for Computing Machinery, New York, NY, USA, 476–494.
https://doi.org/10.1145/3568813.3600122

[25] Ben Stephenson. 2019. Coding Demonstration Videos for CS1. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 105–111. https://doi.org/10.1145/3287324.3287445

[26] Andrea Watkins, Craig S. Miller, and Amber Settle. 2024. Comparing the Experi-
ences of Live Coding versus Static Code Examples for Students and Instructors.
In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing Machinery,
New York, NY, USA, 506–512. https://doi.org/10.1145/3649217.3653562

[27] Christopher DWickens, William S Helton, Justin G Hollands, and Simon Banbury.
2021. Engineering psychology and human performance. Routledge.

https://doi.org/10.1109/VLHCC.2019.8818832
https://doi.org/10.1145/3368089.3409712
https://doi.org/10.1145/3368089.3409712
https://doi.org/10.1145/3330430.3333627
https://doi.org/10.1145/3434168
https://doi.org/10.1145/3441636.3442317
https://doi.org/10.1016/S0167-8760(00)00191-4
https://doi.org/10.1080/01449290701773842
https://doi.org/10.1080/01449290701773842
https://arxiv.org/abs/https://doi.org/10.1080/01449290701773842
https://doi.org/10.1145/3562939.3565631
https://doi.org/10.1145/3373165.3373182
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1080/17457820701350582
https://arxiv.org/abs/https://doi.org/10.1080/17457820701350582
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/3568813.3600122
https://doi.org/10.1145/3287324.3287445
https://doi.org/10.1145/3649217.3653562

	Abstract
	1 Introduction
	2 Related Work
	2.1 Live Coding for Students in CS Classrooms
	2.2 Challenges for Performing Live Coding

	3 Methodology
	3.1 Formative Study
	3.2 Contextual Inquiry

	4 Findings
	4.1 Motivations (RQ1)
	4.2 Implementations (RQ2)
	4.3 Obstacles (RQ3)

	5 Discussion
	5.1 Design Implications
	5.2 Limitations

	6 Conclusion
	Acknowledgments
	References

