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Abstract

Large Language Model (LLM)-based in-application assistants, or
copilots, can automate software tasks, but users often prefer learning
by doing, raising questions about the optimal level of automation
for an effective user experience. We investigated two automation
paradigms by designing and implementing a fully automated copi-
lot (AutoCopilot) and a semi-automated copilot (GuidedCopilot)
that automates trivial steps while offering step-by-step visual guid-
ance. In a user study (N=20) across data analysis and visual design
tasks, GuidedCopilot outperformed AutoCopilot in user control,
software utility, and learnability, especially for exploratory and cre-
ative tasks, while AutoCopilot saved time for simpler visual tasks.
A follow-up design exploration (N=10) enhanced GuidedCopilot
with task-and state-aware features, including in-context preview
clips and adaptive instructions. Our findings highlight the critical
role of user control and tailored guidance in designing the next
generation of copilots that enhance productivity, support diverse
skill levels, and foster deeper software engagement.
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1 Introduction

Human-Computer Interaction (HCI) research has long been ex-
ploring in-application AI-based assistants [5, 37, 41, 49, 55, 65]
designed to assist users in navigating feature-rich software appli-
cations. With the advancements in Generative AI and pre-trained
Large Language Models (LLMs) [2, 3, 12, 77], a new generation of
AI assistants is emerging, capable of automating a wide range of
complex tasks. These LLM-powered assistants, often branded as
copilots [2, 74, 77], can offer targeted, flexible assistance based on
users’ natural language description of help needs [89]. By integrat-
ing context-sensitive automation dynamically into user workflows
[9, 74, 77], these modern copilots such as Microsoft 365 Copilot [77],
Adobe Firefly [2], and Figma AI [24] are exploring ways to fully
automate software tasks, redefining user expectations of what gen-
erative AI can achieve and pushing the boundaries of productivity
and creativity.

Despite the promise of fully automated copilots, they introduce
distinct challenges due to their open-ended nature, inherent com-
plexities, and wide-ranging failure modes [9]. Users often need to
repeatedly review AI outputs and refine their inputs to align them
with their intent, increasing overall effort [10, 78, 81, 87]. Address-
ing these challenges requires effective human-agent collaboration
[9, 76], which involves providing appropriate information [6, 76]
and understanding the dynamics of user interaction across diverse
AI scenarios to avoid false assumptions [52, 74]. Fully automated
copilots often also overlook a key principle from HCI and software
learnability research: users often prefer to learn by doing when
exploring software features [15], underscoring the need for balance
between guidance and automation [42]. Research also shows that
step-by-step instructions with GUI visuals [41, 49, 64] and demon-
strations [32, 48, 61] are essential for improving feature discovery,
retention, and learning outcomes [16, 33].

In this work, we investigate how humans and copilots can col-
laborate within feature-rich software and what the concept of a
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Figure 1: GuidedCopilot, a novel semi-automatic copilot: (a) Copilot assistance is structured to provide step-by-step guidance

along with semi-automation for only repetitive or trivial steps in the task; (b) Visual references of the UI elements in-context to

user’s tasks and application are provided within the step-by-step guidance; (c) Users have control over editing the LLM extracted

entities from their query before the semi-automation is performed; (d) Up-to-date mixed-medium follow-up responses are

provided. To see the contrast with the fully automated copilot assistance, please see AutoCopilot in Figure 2.

“copilot” truly means to users [74]. We examine two distinct de-
sign paradigms for automation [8, 23, 37]: whether users prefer
copilots that fully automate tasks (“Do It For Me”), as seen in fully
automated systems, or those that serve as assistants, combining
semi-automation for repetitive tasks with guided support and in-
structions for learning complex tasks (“Do It With Me”). We in-
vestigate how these design paradigms (semi-automation vs. full
automation) impact task completion and user perceptions of soft-
ware copilots, considering factors such as user expertise (novice vs.
expert), familiarity with LLMs, and the nature of the tasks (fixed vs
and creative, exploratory).

To study these design paradigms, we designed and implemented
two in-application copilot interventions. The first, 1) AutoCopilot
(“Do It For Me”), fully automates software tasks (Figure 2) based on
the user’s textual prompt, inspired by state-of-the-art copilot assis-
tants (e.g., [24, 25, 77]). The second, GuidedCopilot (“Do It With
Me”), is a novel semi-automatic copilot that automates only trivial
or repetitive tasks while offering step-by-step visual guidance to
help users locate UI elements (Figure 1). GuidedCopilot integrates
visuals into its responses, allows users to initiate the automation
process and enables corrections before proceeding. The research
questions guiding this investigation were:

• RQ1: How do users perceive the utility, control, and potential
for software learnability of in-application copilots designed

using two different paradigms: full automation (“Do It For
Me”) and semi-automation (“Do It With Me”)?

• RQ2: How can we design an in-application semi-automated
copilot that provides semi-automation along with step-by-
step visual guidance?

We conducted awithin-subject controlled experiment (N=20) and
follow-up interviews to compare the strengths and weaknesses of
AutoCopilot vs. GuidedCopilot embedded in two different soft-
ware applications: Google Sheets, an online spreadsheet application
and Figma, an online user interface design application. WhileAuto-
Copilot was valued by some participants, particularly males with
CS backgrounds, for saving time on specific tasks, GuidedCopilot
consistently outperformed in user control, software utility, and soft-
ware learnability. These findings were further supported by higher
task completion rates and accuracy scores for GuidedCopilot.
Participants expressed that GuidedCopilot provided higher user
control when performing or customizing complex tasks, whereas
AutoCopilot’s full automation approach often did not align well
with task requirements, leading to time-consuming rounds of trial-
and-error and debugging.

Although participants appreciated GuidedCopilot’s in-context
assistance, some felt that it provided overly detailed instructions
for already-familiar tasks, while others struggled to map visuals in
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the chat to the corresponding UI elements. To address this, we ex-
plored design improvements to enhance semi-automatic copilots by
integrating real-time context of users’ progress and the application
state. We developed two key features (See Figure 7): GuidedCopi-
lotVisual (Visual Step-through), which embeds context-specific
preview clips in the software interface; and GuidedCopilotADP
(Adaptive Mixed-medium), which adapts and tailors instructions
based on user needs and the state of their task progress. In a follow-
up usability study (N=10), expert users appreciated GuidedCopi-
lotADP’s ability to adapt instructions to their proficiency levels,
while novices valued the clickable navigation and the ability to skip
steps. All participants found the preview clips helpful for building
a mental model of the user interface, as they directly highlighted
the relevant icons needed to complete each step based on users’
progress and application state.

The key contributions of this paper are threefold: (1) we ex-
amine two distinct design paradigms for automation through the
design and implementation of GuidedCopilot, a novel copilot that
combines semi-automation with step-by-step visual guidance; and
AutoCopilot, a fully automated copilot; (2) empirical insights into
the strengths and weakness of AutoCopilot vs. GuidedCopilot,
for completing software tasks, focusing on perceptions of software
utility, user control and potential for software learnability; and, (3)
a further design exploration of GuidedCopilot, introducing two
new features, GuidedCopilotVisual and GuidedCopilotADP,
that can enhance visual integration and deliver more targeted, task-
and state-aware assistance, pushing the boundaries of in-context
copilot support. We synthesized the insights from our studies into
key factors (See Figure 8, Section 8.2) and levels of automation along
with guidance to consider for effective human-AI collaboration in
feature-rich software environments. These findings offer impor-
tant implications for HCI and AI research by providing a clearer
understanding of how to balance automation and user control in
software copilots. Future research and applications can build on
these insights to develop more adaptive and user-centered AI as-
sistants that improve task efficiency, user autonomy, and software
learning experiences.

2 Related Work

This research builds upon insights from prior work on software
learnability, LLM-based in-application assistants, and challenges
and opportunities in human-AI interaction in domains such as
programming and software development.

2.1 Learning and Seeking Help for Feature-Rich

Software

Seeking help for feature-rich software is often challenging due
to scattered learning resources that require precise queries for
successful retrieval [29, 33, 43]. Despite the expansion of help
formats beyond traditional documentation and manuals [62, 70],
novice end-users face the vocabulary problem [29] as they try to
locate and apply relevant help from online tutorials, Q&A or FAQ
sites, blogs, dedicated forums [43], and videos [44, 48]. Many re-
sources are either outdated or too general to address specific needs

[43, 83]. While online communities offer targeted and personal-
ized help, they often involve delays and social barriers that dis-
courage user participation [43, 83]. In-context help techniques
[11, 16, 32, 34, 47, 53, 82] that assist people within their current
task and/or application and step-by-step guidance with visuals and
demonstrations [32, 41, 48, 49, 61, 64, 88] can be particularly useful
for helping users within the context of their tasks [16, 41, 43, 53].

AI-based in-application assistants have also been explored in HCI
and AI research to provide customized, context-specific solutions
within software environments [19, 31, 41, 49, 58, 68]. Early sys-
tems, such as SmartAidè [68] and Crystal [58], employed Machine
Learning (ML) and Natural Language Processing (NLP) to interpret
user intent and offer guidance. However, unlike modern copilots
powered by generative AI foundation models capable of tackling
complex, open-ended tasks, the traditional AI systems based on sim-
pler models [9, 19, 23, 31, 36, 58, 68, 75] were limited to handling
narrow range of application-specific queries. Users often found
the text-based assistance provided by these systems challenging to
locate and use within the application’s interface [19, 31, 58, 68]. Re-
cent systems, such as Appinite [49] and ChatrEx [41] offer usability
improvements by combining text and visual cues for task-specific
queries. However, these systems still face challenges with training
sets, limited adaptability across applications [49] and difficulties in
supporting ambiguous or contextually complex queries [41]. Build-
ing on these principles and insights from prior work, our novel
semi-automatic copilot, GuidedCopilot, automates only trivial or
repetitive tasks while providing step-by-step guidance with visual
references. In our follow-up design exploration, we further explored
variations of GuidedCopilot providing assistance dynamically
adapting to the user’s progress and the state of the application.

2.2 Emergence of In-Application Software

Copilots and LLM-based Assistants

LLM-based assistants have emerged as a “one-stop solution” [3, 84],
enabling users to seek help using natural language queries with less
syntactical precision [89]. However, challenges persist in crafting
effective prompts [10, 42, 72, 86, 89], translating text-heavy outputs
into actionable visual instructions, and in applying these LLM out-
puts within the software interfaces [42]. Emerging in-application
LLM assistants or copilots [74, 77], such as Microsoft 365 Copilot
[77], Adobe Firefly [2], etc.) offer ways to automate software tasks
based on prompts. However, users face new challenges with these
new LLM-based capabilities. Users have to navigate and build men-
tal models of both the software’s complex features [42, 43] and
the AI capabilities of the copilots, all while maintaining control in
dynamic environments [41, 42, 52]. These hurdles have led to de-
clining adoption rates for some copilots, with many users choosing
to entirely abandon them [74].

Recent efforts to optimize copilots (e.g., for productivity or cre-
ative tasks) have largely focused on technical improvements, of-
ten without adequately considering user needs or incorporating
insights from user studies [80]. Research shows that users pre-
fer learning by doing and resort to self-directed experimentation
within an application [14, 43, 60, 70, 71]. The fully automated pro-
cesses, while impressive, tend to bypass intermediate steps that
prevent users from fully understanding specific software features
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Figure 2: AutoCopilot: (a) Fully automates the user’s task (e.g., creating a webpage that includes a login and product page); (b)

Similar to state-of-the-art copilots, demonstrates incorrect automation (such as color coding the entire sheet instead of values

greater than 40 in column C); (c) Provides follow-up textual response based on context from software documentation

and task-specific terminology [39, 74]. Recent literature also high-
lights concerns about balancing autonomy and agency, long de-
bated in traditional AI systems [23, 36, 75]. However, such concerns
take on new dimensions in sophisticated LLM-powered copilots
embedded in complex, feature-rich software tasks. In particular,
the open-ended nature of interactions and the multifaceted land-
scape of user behaviors and lack of accurate user mental models
poses unique challenges [42]. This creates a new opportunity to
provide more effective automatic and semi-automatic assistance.
A critical question arises: do users prefer full automation or a bal-
anced approach with semi-automation and guidance? Our study
contributes new insights into how users perceive these two distinct
design paradigms for automation in copilots (semi-automation vs.
full automation) when using feature-rich software.

2.3 Human-AI interaction with LLM Assistants

for Programming Tasks

Although in-application software copilots have only recently started
emerging, we can draw upon empirical studies of copilots for task-
based assistance in domains such as programming and software
development (e.g., GitHub Copilot within VS Code). While these
copilots can automate code generation, they often require users
to invest additional effort in reviewing and customizing the gen-
erated output to align with their actual intent and requirements
[10, 78, 81, 87]. These efforts exacerbate when the copilot generates
incorrect automation (e.g., code generation) without explaining its
actions, requiring users to invest time in understanding the gen-
erated output [10, 39, 81]. These findings suggest that users seek
more than mere automation—they desire a deeper understanding
of the syntax and steps involved in their tasks [87].

Recent work has explored ways to better interpret complex,
nuanced user inputs and generate more contextually relevant re-
sponses [3, 30, 84]. However, despite spending time understanding
LLM-generated code, users often find it harder to comprehend
than their own code [4, 10, 50, 57, 86]. As a result, many solutions
focus on enhancing comprehension and explainability of the gener-
ated code to help users handle both familiar (where programmers
already have some idea how to write the code) and complex pro-
gramming tasks more effectively [22, 87]. For example, the IVIE
system supports in-situ understanding of code by augmenting the
editor to help programmers grasp the generated content. Excessive
automation can reduce user agency, while insufficient automation
can make the assistant less effective or frustrating to use [39]. Our
study extends these insights to the space of software copilots. Our
main goal was to investigate how different levels of automated in-
application help (semi-automation vs. full automation) impact task
completion and user perceptions when using feature-rich software
and we explored this by designing and implementing two interven-
tions: AutoCopilot and GuidedCopilot, described below.

3 Intervention 1: Design Considerations and

Implementation of AutoCopilot
Our first copilot intervention, AutoCopilot (“Do It For Me”), was
based on full automation principles [8, 23, 37] to serve as a realistic
baseline (See Table 1 for comparison of both copilots). Such fully
automated systems [8, 23, 37] are designed to maximize efficiency
and task completion, often with limited or no human interaction.
Drawing inspiration from emerging automatic copilots [2, 77], Au-
toCopilot retrieves pertinent information from software documen-
tation and web data to facilitate users in asking follow-up questions
and presents a targeted and specific textual response to the user.



Do It For Me vs. Do It With Me CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 3: GuidedCopilot Architecture: The user’s query is used to initiate a conversation about automating software tasks,

which is then transmitted to the query understanding and text retrieval module (Section 4.1.1). This module interprets the

query and performs a contextual search across documentation and web data. The extracted intent and relevant excerpts are

processed by GPT-4o to generate text-based procedural steps. These steps are sent to the Image and Automated Function

Retrieval Module (Section 4.1.2) for corresponding visual aids and automated functions, sourced from a curated dataset. Finally,

the LLM agent integrates these text, visuals, and semi-automated functions into a cohesive, mixed-medium response tailored to

the user’s software-related query.

AutoCopilot sometimes also demonstrates incorrect full automa-
tion, similar to modern copilots [17, 26]. Based on these design
considerations, we derived two key design goals for AutoCopilot:

(1) DG1: Provide full automation for the entire software task
(2) DG2: Offer concise follow-up responses based on context

from the software documentation and web data, similar to
in-application state-of-the-art copilots

3.1 AutoCopilot: User Interface Design and

Implementation

Tomaintain consistency and control in our experimental conditions,
we chose to implement AutoCopilot ourselves to facilitate an eas-
ier data collection process. Our AutoCopilot UI (Figure 2) enables
users to input queries, which are then processed by GPT-4 to iden-
tify intent and extract relevant entities. We created a dataset of basic
automation functions tailored to the study’s tasks, using AppScript
in Google Sheets and JavaScript in Figma to control UI elements.
We included instructions in the prompt for AutoCopilot to al-
ways attempt full automation for user queries. We implemented a
hybrid-RAG using OpenAI’s text-embedding-3 model [63] and Elas-
ticsearch [1, 73] to index the descriptions of these full automation
functions and software documentation. These automation functions
are then retrieved based on the user’s intent and combined with
extracted entities from the user’s query to generate the final output.
The pertinent information from software documentation is used
to generate a concise textual response and facilitate users’ follow-
up debugging questions. We integrated LLM-based web search for

up-to-date follow-up responses when existing documentation fell
short. To mirror real-world automation performance, AutoCopi-
lot occasionally encounters incorrect full automation when it fails
to identify a single automation function from the multiple intents
in the user’s query for performing complex tasks outlined in the
study, or when it cannot accurately map multiple entities from the
user’s query to the appropriate automation function. For example,
in sorting data and applying color coding based on a condition, Au-
toCopilotmay incorrectly map the entities to color code the entire
datasheet rather than just the sorted values. Additionally, when the
hybrid-RAG in AutoCopilot fails to identify relevant automation
functions related to the detected intent, it shows a breakdown with
an error message. To ensure consistent reliability of automation
across both copilot conditions, we employed the same software doc-
umentation for RAG, ensuring both copilots generated consistent
response/automation quality and accuracy while minimizing hal-
lucinations. Additionally, the researchers conducted sanity checks
for both copilots to verify response accuracy.

4 Intervention 2: Design Considerations and

Implementation of GuidedCopilot
We implemented GuidedCopilot to reflect semi-automated sys-
tems that combine partial automation with user interaction and
guidance to facilitate incremental learning [8, 23, 37, 74]. Drawing
inspiration from software learnability research (discussed above),
we considered how to structure the copilot assistance semi-automatically
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and how to include visuals in the step-by-step guidance. We de-
veloped four key design goals to enhance copilot assistance using
visuals and semi-automation.

Structuring the copilot assistance: As copilot-driven task au-
tomation increases, crucial steps for users to learn software features
are often skipped, reducing user control [74]. When automation
fails, these skills take control and manually perform these tasks.
In such cases, GuidedCopilot should provide guided help with
visual references as this approach has been shown to be beneficial
for feature-rich software tasks [41, 43]. To balance user control
and automation benefits, GuidedCopilot should offer: (i) semi-
automation for repetitive or trivial steps in the task, (ii) user control
to trigger semi-automation when needed and, (iii) human interven-
tion to verify LLM-extracted data before automation proceeds. For
example, simple tasks like “applying a sort filter in Google Sheets”
or “creating a frame in Figma” could be automated, while detailed
assistance could be provided for the more complex tasks.

Enhancing the step-by-step guidancewith visuals: In-context
GUI visuals [41, 49, 64] have shown to be effective in software help-
seeking. Since users often struggle to locate and use the correct UI
elements when only text-based guidance is offered [3, 12, 42, 77],
copilots provide relevant in-context visual references within the
chat. These visuals, tailored to the user’s specific task and applica-
tion, can help users locate and use software features, such as the
text tool in Figma or advanced sorting option in Google Sheets.

Based on the above considerations, we derived four key design
goals for building GuidedCopilot:

(1) DG1: Provide step-by-step guidance with semi-automation
for repetitive or trivial steps.

(2) DG2: Provide visual references to help users locate and apply
the necessary software features.

(3) DG3: Allow users to initiate semi-automation and edit LLM-
extracted entities before proceeding.

(4) DG4: Offer up-to-date mixed-medium support, combining
web information with software documentation.

4.1 GuidedCopilot: User Interface Design and

Implementation

Based on the above design goals (Section 4), we designed and imple-
mented GuidedCopilot (Figure 1), a novel semi-automatic copilot
that automates only trivial steps while providing step-by-step visual
guidance. Similar to AutoCopilot, we embedded GuidedCopilot
within Google Sheets and Figma to demonstrate its feasibility and
scalability across diverse feature-rich software. Figure 3 illustrates
the overall architecture of GuidedCopilot, which can apply to any
complex software with comprehensive software documentation,
visual examples such as UI elements and screenshots, and an ac-
tive user community on Q&A platforms or forums. Additionally,
the underlying software should support task automation through
scriptable frameworks, making it suitable for a range of softwares,
from productivity suites like Office 365 or Google Workspace, as
well as creative tools such as Photoshop and AutoCAD.

4.1.1 Query Understanding and Text Retrieval Module: When a user
submits a query in the GuidedCopilot UI, this module interprets
the user’s intent and retrieves contextually relevant information for

generating accurate responses by implementing the state-of-the-art
Graph-based Retrieval Augmented Generation (GraphRAG) [67]
using GPT-4o and the BAAI/bge-base-en embedding model [85].
GraphRAG uses NLP techniques and LLMs to construct dynamic
knowledge graphs from documents, linking entities within and
across sentences, outperforming traditional keyword searches and
vector-based retrieval methods. To implement the GraphRAG, we
used the following submodules:

Indexing:We implemented LLM-based web searches to provide
up-to-date responses for follow-up user queries when existing soft-
ware documentation is insufficient. Using GPT-4o, we extracted
search topics from user queries and conduct searches on targeted
websites, such as Google Sheets and Figma Q&A forums. The dy-
namically retrieved web data and documentation are segmented
into discrete TextUnits or chunks, from which entities (e.g., data
items, software functions, GUI elements) and their relationships
are extracted to construct the knowledge graph. The chunks are
then transformed into vectors and indexed in a vector database for
integration with GraphRAG.

Querying for fetching relevant data: After indexing, we
performed querying on the index of software documentation and
web data to extract relevant entities and paragraphs based on the
user’s query. These extracted entities and paragraphs were sub-
sequently used as in-context information for prompts to GPT-4o
to generate stepwise textual responses to the user’s query, which
were further utilized in Section 4.1.2 to retrieve relevant images
and semi-automation functions for integration into the appropriate
steps.

4.1.2 Image and Semi-automation Function Retrieval Module. This
module consists of the following key components:

Image and semi-automation function data preparation

and indexing: We scraped images from software documentation
showcasing tool functionalities and UI elements, extracted their
descriptions and created an index using GraphRAG. We leveraged
scripting capabilities in the form of plugins or extensions using
HTML and JavaScript, often supported by feature-rich applications,
to control UI elements and create a set of semi-automation functions
(e.g., sorting data, creating charts in Sheets, or creating frames
and buttons in Figma). We identified such 25 repetitive tasks for
each application and created generic function templates capable of
handling diverse user queries, whichwere then scripted to automate
the tasks and indexed using GraphRAG.

Querying for relevant images and semi-automation func-

tions: Finally, each text-based step generated byGPT-4o in response
to the user’s query (See Section 4.1.1) is treated as an individual
GraphRAG query to retrieve relevant images and suitable semi-
automation functions from the prepared indexes in Section 4.1.2.
These retrieved images and semi-automation functions are then
provided as input to the LLM agent.

4.1.3 LLM Agent for Mixed Medium Output. We developed an
LLM agent that decides how to strategically integrate the retrieved
visuals and automation functions within LLM-generated textual
step-by-step response. Following the design goals (DG1 and DG2)
as instructions, the LLM agent intelligently decides where to place
these retrieved visuals and automation functions within the textual
steps, producing a mixed-medium output presented to the user
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GuidedCopilot (“Do It With Me”): Semi-

Automation Based Copilot

AutoCopilot (“Do It For Me”): Full Au-

tomation Based Copilot

Automation Automate repetitive or trivial steps of the
task (e.g., create a frame, shape, sort function,
etc.), initiated by users and positioned at
suitable steps within step-by-step guidance

User can edit the LLM extracted entities from
their query prior to performing semi-automation

Fully automate the entire software task (e.g,
color code the quantities in column c greater
than 40)

Step-by-step Vi-

sual guidance

Provides guidance on the task process.

Includes visual references in-context of a user’s
tasks and application to help locate software fea-
tures or functions and effectively apply them
within the application

No

Software Con-

text and Follow-

up questions

Up-to-date mixed-medium response by leverag-
ing latest relevant information on the web along
with software documentation

Up-to-date textual response by leveraging
latest relevant information on theweb along
with software documentation

Table 1: Comparison of two distinct design paradigms for automation: AutoCopilot (“Do It For Me”) vs. GuidedCopilot (“Do

It With Me”)

through the GuidedCopilot UI. Similar to AutoCopilot, Guided-
Copilot occasionally generated errors and exhibited uncertainty,
when its GraphRAG fails to identify relevant semi-automation func-
tions for the detected intent.

Both the copilot UIs module was built as an in-application as-
sistant and migrated to Chrome as an extension for Google Sheets
and as a plugin for Figma. To allow users freedom and control in
accessing the copilot UIs, we included the close options for closing
it anytime during the interaction. The code repository and prompts
for both copilot interventions are available upon request.

5 Evaluation: Controlled Experiment and

Follow-up Interviews

To investigate the strengths and weaknesses of our two copilot
interventions, we conducted a controlled experiment and follow-up
interviews with 20 participants.

5.1 Participants

We recruited 20 participants (10F|10M) for our study, focusing on
non-AI expert users with little to no prior experience or knowledge
of ML or NLP; however, 4/20 participants had previous experience
with ML or NLP. Our participants came from both CS (9/20) and
non-CS (11/20) backgrounds (including Engineering, Accounting,
History, Theory, Communication, and Arts) and professions (admin-
istrative, logistics, information designers, students, researchers, pro-
fessional data scientist, and software developer). Participants were
familiar with LLM-based assistants like ChatGPT (15/20), GitHub
Copilot (7/20), and only 5/20 had used Microsoft 365 Copilot for
software tasks before this study. About half of the participants (9/20)
had frequently used Google Sheets and Excel applications and the
remaining were occasional users. None of the participants had used
Figma before. Our participants covered a range of age groups: 18-24

(32%), 25-34 (47%), 35-44 (16%), 55-65 (5%) and had different levels
of education (1 Post-Secondary, 2 Diploma, 7 Bachelor’s, 6 Master’s,
4 PhD). We recruited participants mainly from our university’s
mailing lists and found additional participants through snowball
sampling.

5.2 Study Design and Procedure

We used a within-subject design to reduce participant variability,
employing a Latin Square counterbalancing [69] method to ran-
domize the order of 2 copilot conditions (4 possible orders). Each
participant completed two tasks per copilot (4 tasks in total), us-
ing one feature-rich application before transitioning to a second
application, with the order of the tasks and copilots randomized.

At the beginning of a session, we introduced both copilots and
provided tips for interacting with the application. Participants com-
pleted a demographic questionnaire on their background and prior
experiences with different software applications, LLM assistants,
copilots, and chatbots. Each copilot intervention was presented in
random order, and tasks were designed to be complex enough to
take at least 8 minutes, regardless of participant familiarity and
prior experiences. After each task, participants completed a post-
task questionnaire to evaluate their overall experience with copilot
assistance, focusing on utility, user control, and potential for soft-
ware learnability. We encouraged participants to think aloud [59]
and reminded them that the study was seeking to understand how
they seek copilot assistance rather than their individual task per-
formance. Lastly, we conducted follow-up interviews to probe into
any difficulties that participants faced and their overall perceptions
of different levels of automation. Each session lasted approximately
one hour and participants received a $15 Amazon gift card.
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Figure 4: Overview of participants’ responses to the post-task questionnaire. The Pearson Chi-Squared test showed a significant

difference for each metric across both copilot interventions for completing the Google Sheets and Figma tasks. With Guided-

Copilot, users demonstrated higher task completion and higher accuracy and indicated that GuidedCopilot helped them

learn the software-specific steps, provided users more control and enhanced their productivity compared to AutoCopilot.

5.3 Choice of Tasks and Applications

We selected Google Sheets and Figma after exploring various other
productivity and design-oriented applications (e.g., PowerPoint,
Photoshop, Word), as they cover a range of tasks involving visual
interactions, statistical functions, and interface design. To observe
potential challenges copilot-assisted software help, we selected
tasks that would require multi-stage help and prompts. For example,
one of the tasks in Google Sheets was to use a copilot to analyze
the top 5 products and visualize their sales across regions using
advanced sorting and a custom bar chart. Similarly, in Figma, one
of the tasks was to design a web page that includes a login section
and displays products using copilot assistance.

5.4 Data Collection and Analysis

We recorded each participant’s screen and audio recorded their
interview responses. We focused on two key aspects: how they used
copilot assistance and different levels of automation to complete

the prescribed tasks in Google Sheets and Figma, and how they
formulated and refined prompts to seek help.

We ran Pearson’s Chi-square test for independence with be-
tween “Copilot Interventions” (having 2 levels: GuidedCopilot
and AutoCopilot) and user responses (having 5 levels, Strongly
Agree to Strongly Disagree) to quantitatively determine the sig-
nificance of the results. The experimenter, in consultation with
all authors, compared task completion and accuracy against the
ground truth, defined as the optimal sequence of steps and ideal
application of software features (See Appendix A for details). To
measure the task completion, we evaluated how many task steps
(e.g., sequence of features/ functions) users completed using the
copilots. To measure task accuracy, we assessed their success in
correctly identifying and applying the sequence of features and
functions (e.g., sort or VLOOKUP function, creating buttons or
shapes). To study trial-and-error strategies, we manually annotated
interaction logs to analyze repeated, varied attempts within user
interactions, revealing non-linear task paths, repetitive actions, and
corrective sequences [13].
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Finally, to complement our experimental findings, we corrob-
orated the data with participants’ think-aloud verbalizations and
probed into the reasons influencing users’ perception of utility, user
control, potential for software learnability. We used an inductive
analysis approach [18] and affinity diagrams [18] along with discus-
sions among the research team to categorize the interview findings
and identify key recurring themes.

6 Results

We have organized our results around key themes, evaluating each
copilot’s strengths and weaknesses in terms of utility, user control,
productivity, and software learnability. We also report task com-
pletion rates, analyze user interactions to identify trial-and-error
patterns, and highlight users’ challenges and debugging strategies.

6.1 Task Completion, Software Utility and User

Productivity with Copilot Interventions

6.1.1 Task Completion and Task Accuracy: None of the participants
fully completed the tasks in Sheets or Figma using AutoCopilot.
In contrast, with GuidedCopilot, 11/20 participants successfully
completed the tasks in Sheets, and 6/20 completed the Figma tasks,
despite Figma being new to all users. On average, participants
completed 35.0% of the Sheets tasks (maximum= 50% and mini-
mum= 0%) with AutoCopilot, compared to 88.5% (maximum=
100% and minimum= 70%) with GuidedCopilot. A paired-sample
t-test further revealed a significant difference between the two copi-
lots (𝑡 (37.6) = 11.2, 𝑝 < 0.0001, two-tailed). For Figma, the task
completion rate was 20.0% (maximum= 50% and minimum= 0%)
withAutoCopilot and 55.0% (maximum= 75% and minimum= 30%)
with GuidedCopilot, also demonstrating a significant difference
(𝑡 (37.7) = 7.2, 𝑝 < 0.0001, two-tailed).

Among the portion of the task completed by each participant,
task accuracy was significantly higher with GuidedCopilot across
both applications. In Sheets, the average task accuracy was 82.0%
(maximum= 100% and minimum= 50%) with GuidedCopilot, com-
pared to 12.0% (maximum= 50% and minimum= 0%) with Auto-
Copilot (𝑡 (37.9) = 17.2, 𝑝 < 0.0001). In Figma, the average task
accuracy was 40.0% (maximum= 60% and minimum= 20%) with
GuidedCopilot, and only 5.0% (maximum= 30% and minimum=
0%) with AutoCopilot with significant difference (𝑡 (30.7) = 10.4,
𝑝 < 0.0001) and no order effects were observed.

6.1.2 User Perception of Copilot Interventions on Productivity and

Software Utility: Most participants (18/20) found that GuidedCopi-
lot enhanced their perception of productivity in completing Sheets
tasks compared to AutoCopilot), and these results were signif-
icant (𝜒2 (4, 𝑁 = 38) = 31.6, 𝑝 < 0.0001), and align with task
completion and accuracy scores. Even though Figma was new to all
participants, most (14/20) felt that GuidedCopilot enhanced their
perception of productivity over AutoCopilot with significant dif-
ferences (𝜒2 (4, 𝑁 = 38) = 18.9, 𝑝 = 0.0008). Participants reported
that AutoCopilot often reduced productivity by generating exces-
sive or irrelevant automation, requiring substantial effort to adjust:
“[Figma task]: I just need enough boilerplate to think through, but
not too much. In this boilerplate, I had to spend extra time to change
it...I felt like I was hitting my head against the wall...ends up wasting

my time (P03).” Conversely, 12/20 users appreciated that Guided-
Copilot’s user-initiated automation and visual instructions, which
saved them time and enhanced productivity: “I like the Guided-
Copilot...the way it gives a mix of everything...text, images, and
buttons...helpful and increases my productivity. It creates the frame,
fields, like a built-in component interacting with the software...that’s
step ahead (P11).”

Overall, most users preferred GuidedCopilot over AutoCopi-
lot across all key measures (See Figure 4). However, a few users
(6/20), primarily male computer science professionals, favored Au-
toCopilot due to its complete automation and perceived time
savings: “I would go with the complete automation...I am a profes-
sional and I don’t care about how to make shapes in Figma. I just
want to get the work done...it gives me a template I can improve and
work with it (P17).” These participants were comfortable debugging
templates in Figma and felt it was easier than handling complex
formulas and data manipulation in Sheets. An older participant
(>55 years) also preferred AutoCopilot due to limited patience for
manual experimentation: “As an older person. . . my patience is not
high, I just want it to do it for me (P19).”

6.2 User Perception of Control with Copilot

Interventions

Wenext evaluated how participants felt about their ability to control
and use the copilots : (i) while performing tasks, and (ii) when
handling incorrect automation generated by copilots.

6.2.1 In-Task Performance. Most participants perceived greater
control with GuidedCopilot than with AutoCopilot when per-
forming tasks in both Sheets (18/20) and Figma (16/20), with signif-
icant differences (Sheets: 𝜒2 (4, 𝑁 = 38) = 24.3, 𝑝 < 0.0001; Figma:
𝜒2 (4, 𝑁 = 38) = 15.7, 𝑝 = 0.0035). In contrast, with AutoCopilot,
many participants (11/20) found full automation to be “a gamble”,
especially in Figma which required extensive customization for
visual tasks: “It felt like LLM 1 [AutoCopilot] was doing it for me,
which is a bit of a gamble...[as] I was little unsure of the result, whereas
LLM2 [GuidedCopilot] gave option of doing it with me, or here
are the steps to do it myself (P04).” With Sheets, many participants
(13/20) also reported lower perceived control with AutoCopilot,
as the lack of validation left them uncertain about the accuracy
of complex tasks: “It [AutoCopilot] felt like it had a mind of its
own...it was doing whatever it wanted and all at once. I felt helpless
and couldn’t understand what went wrong. With data [tasks], things
can get pretty bad (P12).”

In contrast,GuidedCopilot offered flexibility, letting users choose
between step-by-step guidance or selectively using automation at
suitable steps: “I would prefer [GuidedCopilot]...gave me more
control to do it myself or get it done....not like a one-size-fits-all, and
you can kind of fit or modify it to what you need it to do (P15).” About
half the participants (9/20) explicitly appreciated GuidedCopilot’s
detailed instructions that helped them verify the automation and
reduce errors: “I feel more in control with step-by-step guidance. I can
understand the process of that [task]...whereas If it did everything at
once, I might not like a step in the middle...that did not get the results
I was expecting and I’d have to undo (P08).”
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AutoCopilot: users experienced higher trial-and-error 
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Figure 5: Trial-and-Error Differences in AutoCopilot vs GuidedCopilot: This figure illustrates the case of Participant P14, a

computer science professional. Despite P14’s technical expertise, they encountered higher trial-and-error with AutoCopilot,

primarily focused on customizing and debugging the generated automation (e.g., a webpage template) and reversing (or undo)

in case of incorrect automation, which ultimately led the user to abandon AutoCopilot. In contrast, P14 experienced fewer

trial-and-error instances with GuidedCopilot, mostly related to executing and refining tasks like resizing or altering colors.

The user was able to complete the task successfully with GuidedCopilot.

6.2.2 Handling Incorrect Automation. When AutoCopilot pro-
duced incorrect automation, such as generating incorrect web page
templates or coloring an entire spreadsheet instead of only quan-
tities greater than 40 in a column, users often felt derailed and
resorted to trial-and-error strategies. Participants engaged in 192
trial-and-error attempts with AutoCopilot, nearly double the 89
attempts with GuidedCopilot. On average, users made five trial-
and-error attempts per task with AutoCopilot (range: 3-10), com-
pared to fewer than two with GuidedCopilot (range: 1-5) across
both applications. About 75% of AutoCopilot attempts involved
undoing incorrect automation, 55% focused on further debugging
or editing, and 10% focused on locating and applying the assis-
tance. These challenges led some participants (6/20) to abandon
AutoCopilot entirely.

In contrast, with GuidedCopilot, 55% of 89 trial-and-error ef-
forts focused on enhancing or customizing tasks (e.g., resizing
shapes or altering text colors), with only 15% focused on correct
the automation. For example, P14, faced numerous debugging chal-
lenges (Figure 5) with AutoCopilot’s webpage template. However,
with GuidedCopilot, they only made minor adjustments, such
as resizing or altering colors: “AutoCopilot led me into a spiral
of figuring out what to do next...I just wanted a simple page with a
username/password, but it kept adding things back and [would] not
let me change certain things I wanted. I felt lost and caught in a spiral
of bad [prompting] decisions (P14).”

6.3 User Perception of Potential for Software

Learnability

Most participants (16/20) indicated that GuidedCopilot improved
their ability to learn the steps of the software tasks compared to Au-
toCopilot, with results significant for both Sheets (𝜒2 (4, 𝑁 = 38) =
22.1, 𝑝 = 0.0002) and Figma (𝜒2 (4, 𝑁 = 38) = 18.9, 𝑝 = 0.0008).
Participants found GuidedCopilot’s in-context visual cues particu-
larly helpful for locating relevant menu items and navigating appli-
cations like Sheets: “The best thing about this LLM [GuidedCopilot]
is it showed images as a visual clue with instructions. I just had to
match those little pictures with the icons in the sheets, sort of teaching
and explaining the process which helped me learn how to use the
software and execute the task (P16).”

For unfamiliar applications like Figma, GuidedCopilot helped
users learn basic software features, with half transferring their
knowledge to new subsequent tasks (known as transfer learning,
(See Figure 6). As P08 commented: “GuidedCopilot helped me like
a tutor, giving visuals and instructions that take you easily through
the interface and helped me learn and gain confidence in using the
software, so I learned how to create a frame, use the rectangle tool
(P08).” In contrast, many users (11/20) felt dependent on AutoCopi-
lot, expressing doubt about whether they could perform similar
tasks independently in the future: “I don’t want to rely entirely on
the AI [AutoCopilot] to do everything; I want to learn the software
while doing the task. AI should help us learn to complete tasks...not
make us feel dependent on it (P05).”
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AutoCopilot

GuidedCopilot

Task

instructions

GuidedCopilot

Prompts used (P08)
 Copy pasted task query

AutoCopilot Prompts used (P03):
 Create a new frame
 Can you tell me how to create a new frame
 How to create buttons
 Create a webpage that includes a login page.

Figure 6: Illustration of Transfer Learning in Software Usage with GuidedCopilot: Participant P03 started with the Guided-

Copilot condition where the step-by-step instructions helped them grasp fundamental software features (e.g., creating frames

and buttons in Figma), which they effectively transferred when doing subsequent tasks. In contrast, P08, who started with

AutoCopilot, did not demonstrate similar foundational knowledge and continued to rely on a repetitive prompting strategy

of copy-pasting queries in follow-up tasks.

Overall, most participants (15/20) were enthusiastic about using
GuidedCopilot for future software tasks: “I like GuidedCopilot
because it saves time for my accounting tasks to check on payments
and offers both options-doing things automatically and showing how
to do themmyself (P16).” Participants also expressed interest in using
GuidedCopilot for other complex applications like Photoshop and
SolidWorks.

6.4 Areas of improvement in GuidedCopilot

Despite the overall positive interaction with GuidedCopilot, a few
participants faced minor usability issues, such as difficulty in map-
ping visuals within the chat to the software’s UI: “I could not...find
where to locate the VLOOKUP [in Sheets]; maybe highlighting a sec-
tion of the page with ’click here’ would be more helpful (P11).” A few
participants (5/20) struggled with the suggested steps, especially
when new to the software. Participants requested more animated in-
structions tailored to the real-time context of the task progress and
the application’s status: “I could not use the rectangle tool...having
an instructional tutorial that better understands the tasks and recog-
nizes that I clicked on the menu bar with rectangle option and then
give me instructions to learn how to use it would be helpful” (P19).
Finally, some advanced users wanted even more automation and
fewer steps aligned with their current task progress.

7 Enhancing User Experience with

Semi-Automatic Copilots: A Follow-up Design

Exploration

Based on the insights from our first study, we identified key design
considerations for further enhancing user experience with semi-
automatic copilots that were rated as being more useful overall.
We explored variations for semi-automatic copilots that build on
GuidedCopilot to better integrate visuals and can provide more
targeted, task- and state-aware assistance (See Figure 7). For this
exploration, we selected Adobe Photoshop, as users had frequently
expressed a desire to have access to semi-automatic copilots in
this feature-rich application. To simulate both of these adaptive
approaches, we employed the Wizard-of-Oz method [20, 66]. To

capture the users’ initial reaction to these designs, we conducted a
usability study with 10 participants who had varying experiences
with the software application.

7.1 Feature 1: GuidedCopilotVisual (Visual

Step-through)

GuidedCopilotVisual (Figure 7b) offers dynamic step-by-step as-
sistance using visual anchors and context-sensitive preview clips
specific to the user’s current tasks and the application state. Our
design complements prior research that has shown the value of
in-application instructional videos [27, 28, 40] and step-through
demonstrations [32, 41, 48, 61] by incorporating users’ task progress
and application state. When users select “Show in the interface”
(Figure 7a), GuidedCopilotVisual presents targeted preview clips
that dynamically adapt to the user’s progress and application state,
visually demonstrating the next steps (e.g., after adding and resizing
a moon, it suggests options for creating a reflection). To design this
feature, we prepared the preview clips relevant to each step in ad-
vance, along with relevant images and screenshots, to support users
in locating the corresponding menu items within the application.

7.2 Feature 2: GuidedCopilotADP (Adaptive

Mixed-medium)

GuidedCopilotADP provides in-context mixed-medium assistance
tailored to the user’s current task and application state, dynami-
cally adapting instructions based on the user’s needs (Figure 7c).
For example, if the user has already adjusted an element, Guided-
CopilotADP skips to the next relevant step (e.g., step 3). We used
GPT-4o to generate textual step-by-step instructions. The UI mod-
ule is built using ReactJS and migrated to Chrome as an extension.
The researcher monitored real-time task progress and the appli-
cation’s state and manually controlled which steps needed to be
shown next, facilitating rapid prototyping and validation of various
adaptive features while gaining insights into user interactions. The
researcher played the preview clip based on the user’s completed
tasks and the next required steps, effectively mimicking a task-
and state-aware adaptive system. To simulate semi-automation, the
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Figure 7: Design exploration building on GuidedCopilot to offer targeted, task- and state-aware assistance in Photoshop

through two key features: (a, b) GuidedCopilotVisual integrates in-context preview clips within the software interface. When

the user clicks “Show in the interface”, the copilot detects the user’s task progress and application state to display relevant

preview clips for the next step (e.g., after adding and resizing the moon, the clip suggests the menu option for creating a

reflection). (c) GuidedCopilotADP adapts the number of instructions based on user needs; for example, if the user has already

adjusted the moon’s size, it skips to step 3. Clickable milestones provide control and flexibility to navigate through instructions.

(d) The user can opt for semi-automation by clicking on relevant options.

researcher executed these actions on behalf of the system whenever
the user opted to automate a particular step.

7.3 Study Procedure and Participants

To study user’s initial reactions, we conducted a usability study
with 10 participants (4F|6M) aged 20-30, from different backgrounds
(CS, Robotics, Engineering) and education levels (5 Master’s, 3
PhD, 2 PostDoc). About half of the participants (6/10) were novices,
while 4/10 were experienced Photoshop users. All participants were
familiar with LLM-based assistants like ChatGPT, and some with
GitHub Copilot (4/10).

Each session began with an introduction to both features within
the copilot variation, followed by a demographic questionnaire on
participants’ backgrounds and prior experiences with LLM assis-
tants and software applications, lasting 30 minutes in total. They
were then asked to complete tasks using the web version of Adobe
Photoshop with the GuidedCopilot plugin installed. The task
involved adding a moon image and its reflection to a scene and
integrating them seamlessly with the background (Figure 7), us-
ing both in-application copilot features (GuidedCopilotVisual
and GuidedCopilotADP) for assistance. In follow-up interviews,
we probed further into user reactions and overall experience. Par-
ticipants were encouraged to think aloud throughout the session.

Sessions were video and audio-recorded for transcription, including
the actions on screen.

7.4 Findings

7.4.1 Users’ reactions when using GuidedCopilotADP. All expert
users (4/10) appreciated GuidedCopilotADP for skipping the steps
they had already completed, especially in tasks where they were
proficient and had clearer goals: “The milestones are structured...it
directs me from step one to three when I already completed step two.
It works when you have a clear goal and you know there’s one way
to go...(D04).” They suggested even more granular detection of ac-
tions to assist with option-based scenarios (e.g., opacity and blend).
Experts also saw the potential for this feature in apps like Canva,
Cadence, and SolidWorks.

Novices appreciated the clickable navigation of milestone steps
for unfamiliar tasks and the ability to skip those steps when profi-
cient. They found this adaptability helpful for validating the success-
ful completion of their current step: “I like it [GuidedCopilotADP]
...it breaks down steps and automatically goes to the next step when
I finish...I don’t have to check if I completed that step. If I want to
explore the other functions I can go back (D06).” Both novice and
expert users noted that GuidedCopilotADP would be increasingly
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useful as novices gained proficiency with the application, for both
complex and artistic tasks.

7.4.2 Users’ reactions when using GuidedCopilotVisual. All par-
ticipants found the task and state-aware preview clips easy to use
and helpful for forming a mental model of the user interface: “I
know what is going on in my mind...is clear with these videos [preview
clips] after reading the steps, it directly shows me which button to
click, which parameter to modify (D04).” Unlike traditional video
demonstrations, participants liked that these clips aligned with the
application’s current state and task progress, saving them time and
helping locate UI elements more quickly: “I like preview clips based
on my task progress because they save my time...I don’t need to go to
[the] beginning every time...making it more automatic was helpful
(D09).” Participants were eager to see these clips for tasks in other
feature-rich applications like SolidWorks, Canva, and Lightroom.

8 Discussion

8.1 Key Takeaways

In this paper, we provide compelling evidence that users value
maintaining control when interacting with software copilots, par-
ticularly for complex tasks. Semi-automation, as implemented in
GuidedCopilot, was effective for repetitive and trivial steps, en-
hancing perceptions of productivity and user satisfaction. While
AutoCopilot’s full automation appealed to a few of the technical
participants, it was often misaligned with tasks and increased users’
debugging efforts. In contrast,GuidedCopilot’s step-by-step visual
guidance empowered users to learn software skills, validate auto-
mated processes, and regain control when the automation fell short,
especially for unfamiliar tasks. While our study focused on Guided-
Copilot’s implementation in two applications, our implementation
using scriptable frameworks is flexible and can be generalized to
other feature-rich software with detailed documentation and visual
examples. Furthermore, our follow-up design exploration highlights
opportunities to enhance semi-automatic copilots with task- and
state-aware features that dynamically adapt to user needs.

By challenging the trend toward fully automated copilots, our
findings underscore the importance of end-user customization,
guidance, and control for effective user-copilot collaboration. Our
experimental and qualitative insights contribute to a deeper under-
standing of how to design copilots for complex workflows within
feature-rich applications that accommodate different experience
levels. Consistent with historical lessons in automation research
[74], we argue that AI and feature-rich interfaces will coexist and
evolve together as complementary tools rather than replacements.
HCI and AI researchers, interface designers, developers, and oth-
ers working on LLM-powered assistants leverage our framework
and key factors (Figure 8, Section 8.2) to achieve more effective
human-AI interaction.

8.2 Key factors to consider for levels of

automation

Based on our two study findings, we identify three key factors for
determining the appropriate level of automation and user control in
software copilots. We propose a three-dimensional framework (Fig-
ure 8) with axes for Semi-Automation vs. Full Automation, Adaptive

Step-by-Step Visual Guidance vs. Non-Adaptive Step-by-Step Visual
Guidance, and three influencing factors: (i) Familiarity with the ap-
plication, (ii) Task Type, (iii) User Intent in learning vs. performing
tasks.

8.2.1 Familiarity with the application. Our findings highlight
that users benefit more from semi-automatic copilots with stepwise
visual guidance, particularly when onboarding with unfamiliar
software.While full automationmay streamline trivial tasks, it often
lacks explainability and does not help users develop a mental model
of software features or learn how to manipulate automation. Future
research should explore how software copilots shape user mental
models, especially for novices. Though some studies have explored
mental models with LLM assistants in help seeking [42, 79], more
research focused on the new generation of in-application copilots
is needed to foster more intuitive and effective interactions. Future
work can also explore long-term deployments to investigate the
impact of interaction duration (short-term vs. long-term) on user
expectations and experience with automation in software copilots.

As users gain experiencewith a software, adaptive semi-automatic
support has the potential to enhance software utility and produc-
tivity. Building on prior research on personalized and adaptive help
systems [7, 21, 35, 54, 65], future copilots should be designed to of-
fer adaptive, semi-automated approaches that balance time savings
with user control, catering to varying expertise levels.

8.2.2 Task Type. Our study shows that higher levels of automa-
tion work best for simple, repetitive tasks aligning with prior works
[74], but semi-automation is preferred for complex decision-making,
debugging, or validation tasks (e.g., intricate data analysis or ex-
ploratory design). Copilots that offer adaptive visual guidance and
previews can be particularly helpful for creative software tasks.
Such copilot assistance can prevent users from becoming passive
monitors — a risk often transformed with higher levels of automa-
tion [74]. Future copilots should leverage both task categories and
software, moving beyond the general-purpose designs (e.g., [24, 77])
to better cater to diverse user needs. The HCI and AI communities
should join forces to focus on creating copilots tailored to users’
specific tasks and needs.

8.2.3 User intent in learning vs. performing tasks. Although we
did not formally investigate gender, age, or CS background as a fac-
tor, we observed that male users with CS backgrounds preferred au-
tomation for time efficiency. However, fully automated approaches
risk overreliance and deskilling [42, 74], particularly for novices.
Users can face a diminished ability to perform tasks independently
or intervene when automation fails. Most novices preferred our
semi-automated copilot that promoted learning of software steps.
This aligns with established help-seeking behaviors, such as “learn-
ing by demonstration”, using visual mediums [41, 49, 64], step-by-
step guidance [16, 41], adaptive help [7, 21, 35, 54, 65], in-context
help systems [11, 16, 32, 34, 47], and visual demonstrations [16, 27,
28, 40, 48, 61], all proven effective for enhancing user learning and
retention. Future semi-automatic copilots could go a step further
by integrating Explainable AI (XAI) [51, 56] to make AI decision-
making processes more understandable. Semi-automatic copilots
could not only assist in task execution (as seen in GuidedCopilot)
but also help users learn from the AI’s reasoning [41, 45], ultimately
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Figure 8: Dimensional framework describing key factors to consider when determining levels of automation and step-by-step

guidance in copilots: (a) Familiarity with the application: When designing copilots for unfamiliar applications, a guided,

semi-automatic approach with visual references can help users onboard, while more adaptive support for experts balances time

savings with user control, catering to different expertise levels. (b) Tasks Type: Higher levels of automation are best suited for

straightforward, repetitive, or simpler visual tasks. For more nuanced tasks involving complex decision-making, debugging,

user dependencies, or creative input, semi-automatic copilots with step-by-step visuals or previews are more beneficial, allowing

for greater user control. More adaptive guidance is useful for tasks with clear goals and intentions, typically non-artistic and

non-exploratory, within feature-rich applications. (c) User Intent to Learn: For users with a clear intent to learn while using

feature-rich software, future copilots should adopt a semi-automatic approach with step-by-step guidance—more adaptive for

experts and less adaptive for novices—balancing automation with user learning. For those focused on time efficiency, such as

expert software users and CS male users, a higher level of automation would be more suitable.

fostering skill development and reducing overreliance. Such copi-
lots for complex software tasks should balance automation with
learning, incorporating mixed-medium, in-context help, as seen
with GuidedCopilot. Our paper provides empirical evidence that
copilots should function truly as “co-pilots” [74], supporting users
without diminishing their role or skills, and draw from established
help-seeking strategies [14, 27, 28, 40] to maintain a balance be-
tween automation and user learning.

8.3 Prioritizing User Control When Designing

Copilots

As seen in studies of LLM-powered tools for code generation [39,
74], our findings show that users preferred GuidedCopilot as its
balanced automation with instructional guidance allowed users to
choose their level of control. Our follow-up study further suggests
that while automating certain tasks can enhance efficiency (See

Section 8.2.2), users need the ability to intervene, make decisions,
understand the process, and retain control. This is important in
particular when dealing with complex or creative tasks where au-
tomation has higher chances of failing. This approach aligns with
the concept of mixed-initiative interactions [5, 37], where users
shift between manual and automated modes based on their needs
and task complexity.

Although we did not focus on creativity needs, previous research
suggests that visual artists and graphic designers also value con-
trol over their creative processes when using visual feature-rich
software [38, 46]. Future research should explore how copilots can
better support creative workflows by offering adaptable automation
that enhances, rather than undermines, their creative autonomy.
By allowing users to select their preferred level of automation,
future copilots can better support diverse user and task needs, fos-
tering both effective collaboration and continuous learning. Future
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research should also explore multi-agent strategies to optimize
when and how automation should intervene, ensuring that copilots
empower users while maximizing the benefits of automation.

9 Limitations

Our study examined two distinct design paradigms in software
copilots (semi-automation vs. full automation) and how they im-
pact task completion and user perceptions. Although our findings
emphasize the importance of user control and accommodating di-
verse experience levels, they are limited by the applications used
(Figma, Sheets) and the evolving capabilities of LLMs. Although our
prototypes were effective for initial insights, advanced vision-based
LLMs like SORA could provide more real-time data and deeper
analysis. We did not directly assess the impact of specific features
(e.g., automation, step-by-step guidance), as this would compromise
ecological validity. Our findings highlight the issue of full automa-
tion without transparency or guidance, suggesting that automation
alone is insufficient. Future research should explore the role of
transparency in both automation paradigms and quantitatively as-
sess the independent effects of these features, along with individual
differences (e.g., age, gender, expertise), using larger, more diverse
samples.

10 Conclusion

We investigated two design paradigms for automation in software
copilots:AutoCopilot, a fully automated copilot, andGuidedCopi-
lot that combines automation of trivial steps with step-by-step
visual guidance. Our results show that while full automation may
appeal to a few users, most prefer to maintain control over com-
plex tasks, favoring semi-automation for repetitive and trivial steps.
As copilots advance toward full automation, our findings under-
score the importance of offering greater user control and accommo-
dating diverse experience levels to maximize effectiveness. These
insights provide valuable guidance for HCI and AI researchers, de-
signers, and developers in balancing automation with control and
user autonomy, fostering more effective human-AI collaboration in
feature-rich software.
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A Additional details on Data Analysis:

Controlled Experiment and Follow-up

Interviews

We describe the actual software tasks users performed with assis-
tance from copilot interventions, along with the ground truth for
each task, to evaluate task completion and accuracy.

A.1 Ground truth sample for spreadsheet tasks

in Sheets

• Task 1: Participants were asked to use copilot assistance to
find the top 5 products in terms of sales and visualize the
sales distribution of these products across different ‘regions’
in a bar chart, making the bar chart pink gradient.
Ground Truth: The ground truth for successful task com-
pletion is defined by how many of these task steps users
completed (1) using the sort function on the sheet with the
data ranging from A1:C31 (2) creating a bar chart of the data
ranging from A2:C6 (3) using the customize tab in the chart
editor to modify the Fill color and Line color of the series
bar to pink in the bar chart. The ground truth of the task
accuracy reflects how accurately they applied these outlined
sequence of steps and software functions to complete the
given task.

• Task 2: Participants were asked to use copilot assistance
to color-code quantity values greater than 40 in the Inven-
tory sheet and to find and insert the corresponding product
names from the ’Products’ sheet into column D of the ‘In-
ventory’ sheet. They were asked to match the product IDs
listed in column A of the ‘Inventory’ sheet with those in the
’Products’ sheet under the ’Products’ column.
Ground Truth: The ground truth for successful task com-
pletion is defined by how many of these task steps users
completed (1) using the Conditional Formatting on the se-
lected data range C2:C13 (2) applying the “Greater than”
format rule to set the condition for values greater than 40
(2) using the VLOOKUP formula (e.g., =VLOOKUP(A2, Prod-
ucts!A:B, 2, FALSE)) in column D of the ‘Inventory’ sheet,
and (3) copying the formula down column D to apply it for
all product IDs. The ground truth of the task accuracy re-
flects how accurately they applied these outlined sequence
of steps and software functions to complete the given task.

A.2 Ground truth sample for UI design tasks in

Figma

• Task 1: Participants were asked to use copilot assistance to
create a webpage that includes a login page (username, pass-
word, button, interaction to the product page) and product
page (description of the product, and image). (Participants
were provided with the reference webpage to create)
Ground Truth: The ground truth for successful task com-
pletion is defined by how many of these task steps users
completed (1) using the Frame (F) tool to create two frames
for login and product page function on the sheet (2) using
the Rectangle tool to add input fields for username and pass-
word and create Submit button (3) using the Text Tool (T) to

add a label above each field (e.g., “Username” , “Password”,
“Submit”) and adjusting the spacing of the added rectan-
gles (4) using Image tool to include prodcut images (already
provided to the participants) (5) adding interactions to the
button using the Prototype tab and dragging prototyping
handle from login button to product page. The ground truth
of the task accuracy reflects how accurately they applied
these outlined sequence of steps and software functions to
complete the given task.

• Task 2: Participants were asked to use copilot assistance to
design an interactive tutorial that provides a comprehensive
three-step interactive project timeline of your product devel-
opment cycle and looks like the reference project timeline.
(Participants were provided with the reference project time-
line)
Ground Truth: (1) using the Frame (F) tool to create a frame
(2) using the Eclipse tool to draw an oval shape for the time-
line, Rectangle tool for creating buttons and adjusting the
size, spacing and shape (3) using the Fill option to color the
shapes and Text Tool (T) to add a label above each field (e.g.,
“Step 1: Brainstorming” , “Step 2: Prototyping”, “Next”) (4)
adding interactions to the button using the Prototype tab
and dragging prototyping handle from Next button to sec-
ond page The ground truth of the task accuracy reflects how
accurately they applied these outlined sequence of steps and
software functions to complete the given task.
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