

The Stress of Improvisation: Instructors' Perspectives on Live Coding in Programming Classes

Xiaotian Su, April Yi Wang

xiaotian.su@inf.ethz.ch, april.wang@inf.ethz.ch Department of Computer Science, ETH Zurich

1 Introduction

Live coding is the process of designing and implementing a coding project in front of the class during lecture period. While live coding offers numerous benefits to students, there is little concrete evidence for how **instructors** perceive the benefits of live coding and the cognitive load it imposes on them.

2 Research Questions

RQ1: What motivates instructors to use live coding in their teaching?

RQ2: How do instructors approach and conduct live coding in the classroom?

RQ3: What obstacles or barriers do instructors encounter when teaching programming through live coding?

3 Methodology

Semi-Structured Interviews

Interviews with five teaching assistants, focusing on their experiences of live coding in small exercise session

Contextual Inquiry

Observations of four lecturers conducting live coding during largescale computer science lectures, spanning a variety of topics.

PID	Age Range Gender		Profession	Teaching (# years)	Class size (# students)	Students		
						Н	U	С
P1	20-25	F	BSc Student	One	20-30	√	√	
P2	20-25	М	MSc Student, Part-Time Lecturer	Three	20-30	√	√	
P3	26-30	М	PhD Student	Five	20-30		V	
P4	20-25	М	PhD Student	Five	30-50		✓	✓
P5	26-30	М	PhD Student	Six	20-30	√	√	
P6	30-35	М	Full-Time Lecturer	Five	300-400		√	
P7	40-45	М	Full-Time Lecturer	Five	50-150		√	√
P8	45-50	М	Full-Time Lecturer	Eight	100-150			

4 Results

RQ1: Motivations

- Improve Comprehension and Pacing: Live coding helps instructors slow down the lecture speed.
- Adaptivity: Live coding allows instructors to address student queries and adapt teaching to student needs in real-time.
- Engagement: Live coding enables students to engage more actively than traditional classrooms.
- Instilling Good Programming Practices. Live coding improved students' adherence to coding conventions and best practices.

When I show students that I transform very unreadable code Into readable code, I notice that in the next submission, they follow these practices.

-- P2

RQ2: Implementations

- Preparation: Instructors for different levels have different strategies.
- Procedure: Live coding in lectures are restricted while in exercises are more flexible.
- Students' Activities: Students found it difficult to call out the next line of code when instructors sought input.

I wouldn't have a fixed set of commands ready; I would put myself in the situation of the students that they would be starting from a blank state.

-- P5

RQ3: Obstacles

- Decline of Engagement: Students lose interests if the session is too long.
- Unpredictability: Live demonstrations may deviate from the plan, occasionally resulting in errors or unexpected outcomes.
- Mental Stress. Novice instructors reported more mental stress than experienced instructors.
- Time Pressure. Instructors often struggle to keep time due to the improvisational and unpredictable nature of live coding.

When the code gets complex, I tend to focus too much on the debugging, and I lost the audience.

